skip to main content


Search for: All records

Creators/Authors contains: "Hikita, Yasuyuki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The self-organization of strongly interacting electrons into superlattice structures underlies the properties of many quantum materials. How these electrons arrange within the superlattice dictates what symmetries are broken and what ground states are stabilized. Here we show that cryogenic scanning transmission electron microscopy (cryo-STEM) enables direct mapping of local symmetries and order at the intra-unit-cell level in the model charge-ordered system Nd1/2Sr1/2MnO3. In addition to imaging the prototypical site-centered charge order, we discover the nanoscale coexistence of an exotic intermediate state which mixes site and bond order and breaks inversion symmetry. We further show that nonlinear coupling of distinct lattice modes controls the selection between competing ground states. The results demonstrate the importance of lattice coupling for understanding and manipulating the character of electronic self-organization and that cryo-STEM can reveal local order in strongly correlated systems at the atomic scale.

     
    more » « less
  2. Abstract

    Quantum ground states that arise at atomically controlled oxide interfaces provide an opportunity to address key questions in condensed matter physics, including the nature of two-dimensional metallic behaviour often observed adjacent to superconductivity. At the superconducting LaAlO3/SrTiO3interface, a metallic ground state emerges upon the collapse of superconductivity with field-effect gating and is accompanied with a pseudogap. Here we utilize independent control of carrier density and disorder of the interfacial superconductor using dual electrostatic gates, which enables the comprehensive examination of the electronic phase diagram approaching zero temperature. We find that the pseudogap corresponds to precursor pairing, and the onset of long-range phase coherence forms a two-dimensional superconducting dome as a function of the dual-gate voltages. The gate-tuned superconductor–metal transitions are driven by macroscopic phase fluctuations of Josephson coupled superconducting puddles.

     
    more » « less
  3. Abstract

    Designing acid‐stable oxygen evolution reaction electrocatalysts is key to developing sustainable energy technologies such as polymer electrolyte membrane electrolyzers but has proven challenging due to the high applied anodic potentials and corrosive electrolyte. This work showcases advanced nanoscale microscopy techniques supported by complementary structural and chemical characterization to develop a fundamental understanding of stability in promising SrIrO3thin film electrocatalyst materials. Cross‐sectional high‐resolution transmission electron microscopy illustrates atomic‐scale bulk and surface structure, while secondary ion mass spectrometry imaging using a helium ion microscope provides the nanoscale lateral elemental distribution at the surface. After accelerated degradation tests under anodic potential, the SrIrO3film thins and roughens, but the lateral distribution of Sr and Ir remains homogeneous. A layer‐wise dissolution mechanism is hypothesized, wherein anodic potential causes the IrOx‐rich surface to dissolve and be regenerated by Sr leaching. The characterization approaches utilized herein and mechanistic insights into SrIrO3are translatable to a wide range of catalyst systems.

     
    more » « less